With exclusive, new monomer technology from DuPont to create a truly revolutionary TOTAL PACKAGE in aesthetic dentistry.
Three components factor into KALORE’s unique design:

- DuPont’s new monomer technology
- GC America’s patented HDR* prepolymerized fillers
- The proprietary interphase between the fillers and the matrix

* HDR = High Density Radiopaque
A Breakthrough in the Matrix Phase

The DuPont Monomer
A Breakthrough in Matrix Phase

DX-511 Monomer (New Monomer Technology from Dupont)
UDMA (Urethane Dimethacrylate)
Dimethacrylate co-monomers

No Bis-GMA
The DuPont Monomer

DX-511 Monomer (New Monomer Technology from DuPont)

- The long rigid core helps reduce polymerization shrinkage.
- The flexible side arms help increase monomer reactivity.
- High molecular weight (895) and low number of C=C double bonds help reduce polymerization shrinkage.
- The monomer is compatible with current adhesive and composite products.
DX-511 (DuPont monomer) compared with typical Resin Based Monomers, Relative Size and Molecular Weights

Bis-GMA, MW 512.6

UDMA, MW 470.6

TEGDMA, MW 286.3

DX-511, MW 895
Increasing the size and molecular weight of monomers reduces overall shrinkage
Chemistry

New Prepolymerized Filler of KALORE™

Ave. 17 µm
400 nm Strontium Glass
100 nm lanthanoid fluoride
Special Surface treatment

High Radiopacity

Conventional Prepolymerized Filler

Ave. 17 µm
16 nm silica filler

No Radiopacity

Both Strontium Glass and Lanthanoid Fluoride have radiopacity. Especially, Nano Lanthanoid Fluoride has high radiopacity and does not block visible light.
A New Improved Filler Phase

Prepolymerized filler (with Lanthanoid Fluoride)
- 30 – 35% by weight

Fluoroaluminosilicate glass
- 20 – 30% by weight

Strontium/Barium glass
- 20 – 33% by weight

Silicon dioxide (Nanofiller)
- 1 – 5% by weight

82% Filled by weight
A New Improved Filler Phase

New Prepolymerized Filler
- Average Size 17 µm
- 400 nm Strontium Glass
- 100 nm Lanthanoid fluoride

Glass Fillers
- 700 nm Strontium Glass
- 700 nm Fluoroaluminum Silicate Glass

Non-aggregated Nano Silica Filler
- 16 nm Silica filler
A New Improved Filler Phase

New HDR Prepolymerized Filler Particles

Average Overall Size, 17 µm

Special Surface Treatment used for better bonding to surrounding resin.

HDR = High Density Radiopaque
A New Improved Filler Phase

Prepolymerized Fillers
Internal Nano Particles

400 nm Strontium Glass
60% by weight

100 nm Lanthanoid Fluoride
20% by weight

Lanthanoid fluoride glass allows for effective transmission of light to achieve translucency while blocking x-rays for enhanced radiopacity. Special Surface treatment used for improved bonding to surrounding resin.

Resin = 20% by weight
High loading Prepolymerized fillers provide better wear resistance than traditional less loaded Prepolymerized fillers.
A New Improved Filler Phase

Glass Fillers

700 nm Strontium Glass

700 nm Fluoroalumino Silicate Glass

The modified strontium and fluoro alumino silicate glasses have slightly different refractive indexes from each other for an improved chameleon effect.
A New improved Filler Phase

Nano Silica Filler
16 nm silica, mono-dispersed for better wear resistance

This improves the wear resistance of the resin matrix.
Photoinitiator

Camphorquinone (CQ)

- <1% by weight
- Spectral Curing range 400 – 500 nm
- Cures well with most standard Quartz Halogen Tungsten (QHT), PAC and LED Curing lights
Volumetric Shrinkage (%)

Volumetric Shrinkage (1 hour, Mercury dilatometer; n=3)

Means with the same lower case letter are not significantly different (1-way ANOVA/Tukey’s; p = 0.05).

Source: Dr Jack Ferracane, “Evaluation of the Volumetric Shrinkage, Fracture Toughness and Polymerization Contraction Stress of a New Dental Composite”, March 2009
Volumetric Shrinkage (%)

KALORE™ has one of the lowest % volumetric shrinkage of all composites tested.

Protocol: ISO Draft Date: 2007-07-10
Dentistry - Polymerization shrinkage of filling materials.

Source: GC Corp. R & D
Shrinkage Stress is Key

- During polymerization: resin matrix reduces in volume while fillers retain its volume.
- Stress within the cured composite can lead to early displacement of fillers.
- This is called Shrinkage Stress.
Shrinkage Stress, N

Source: GC Corp. R & D

Protocol:
Attach the jig on the universal test machine EZ-S (Shimadzu). Sandblast the slide glass surface and silane coupling treatment. Attach this slide glass on the jig. Place 1.66ml composite resin on the lower slide glass at the jig. Down the upper jig for 4 mm clearance from lower slide glass. Light cure 40 second from bottom side with GC G-light with 11 mm fiber rod. Light cure 20 second from top with GC G-light with 11 mm fiber rod. Measure 20 minutes and record highest load as shrinkage force.

KALORE™ demonstrated the lowest shrinkage stress of all competitive products tested.
Contraction Stress (5 minutes after light cure; Bioman; n=5)

Means with the same lower case letter are not significantly different (1-way ANOVA/Tukey’s; p = 0.05).

Source: Dr Jack Ferracane, “Evaluation of the Volumetric Shrinkage, Fracture Toughness and Polymerization Contraction Stress of a New Dental Composite”, March 2009
Volumetric Shrinkage, Time

KALORE™ recorded the lowest volumetric shrinkage (over time) of all competitive products tested.

Protocol:
Measurements were continuously recorded using a mercury dilatometer. Composite was applied to the bottom surface of a glass stopper, which was then inserted into the mercury of the dilatometer. The sample was light-cured through the glass for 40 seconds with an Elipar Highlight (750 mW/cm²). Shrinkage was recorded for 4 hours at 23 °C.
KALORE’s Total Package

Benefit # 1: Superior handling-Complete Control is in Your Hands

• Non-sticky due to the patented HDR prepolymerized fillers.
• The DuPont monomer’s stiff core and flexible arms create a putty-like property and makes it easier to spread.

Result: KALORE’s unique properties allow for easy shaping and adaptation. KALORE is highly sculptable and non-slumping.
KALORE’s Total Package

Benefit # 2: Unsurpassed Aesthetics – Flawless Beauty, So Easy to Create.

- Exceptional gloss
- Easy polishability
- Sustained luster

\{ Lower shrinkage stress allows for less risk of filler dropout.\}

- Chameleone effect: Optimized refractive index of the filler and matrix result in near perfect matching.

Result: Unmatched aesthetic success and perfect restorations.
KALORE’s Total Package

KALORE with DuPont monomer KALORE with conventional monomer

No gap on prepolymerized filler interphase. No dropout fillers were observed.

Gap on prepolymerized filler interphase: ✴
Dropout of fillers: ○

Source: GC Corp. R & D

Protocol: Prepare 15mm diameter and 1.5mm thick. Grind the surface by 600 grid paper. Polish the surface 2 minutes by Pre-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia Polisher paste.
KALORE™ was found to have a gloss rate among the highest of all materials tested.

Protocol:
Prepare 15mm diameter and 1.5mm thick. Grind the surface by 600 grid paper. Polish the surface 2 minutes by Pre-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia-Polisher paste. Measure the surface gloss rate with a VG-2000, Nippon Denshoku.
Surface Gloss Retention, %

Protocol:
- Composite specimens were prepared in the acrylic mold shown in Fig.1. Sample surface were polished using #80, #180, #320, #600, #1000, #1500 and #2000 emery paper followed by buff with 1 micron alumina. Surface gloss rate were measured after polish. Specimens were moved up and down along a 4 cm path at a rate of 30 strokes per minute and held in indirect contact with an acrylic plate under a load of 350 gf load and simultaneously, the sample holder slid horizontally along a 2 cm path at a rate of 30 strokes per minute.
- A mixture of PMMA and glycerol (1:1 vol%) was used as an intermediate abrasive. After 100,000 cycles (one complete lateral and vertical movement counts for one cycle), the surface gloss were measured.

Source: GC Corp. R & D
Protocol:
Prepare samples of 15mm diameter and 1.5mm in thickness. Grind the surface with #2000 grid paper. Polish the surface with PoGo. Measure surface gloss rate with a VG-2000, Nippon Denshoku.

KALORE™ has among the highest Gloss Rates tested.

Source: GC Corp. R & D
InViz’ Effect

KALORE™ has excellent chameleon properties because its different internal components reflect and refract light similarly to the way teeth do.

Reflection off of Kalore is the same as reflection off the tooth

Reflection by Enamel Crystals
Reflection by DEJ
Reflection by Peritubular Dentin
Reflection by dentinal tubules

Diffused reflection in composite, and diffused reflection in tooth.
KALORE’s Total Package

Benefit # 3: Significant Longevity and Durability
Sustained Form and Function

- The average restoration loses form, function and aesthetics in 3 to 4 years as the particles dropout due to shrinkage stress.

Result: KALORE™ keeps your restorations lasting longer by maintaining their form and function over time.

- Surface loses luster
- Surface becomes rough
- Surface picks up stains
- Eventual wear and tear
KALORE’s Total Package

Protocol: Prepare 15mm diameter and 1.5mm thick. Grind the surface by 600 grid paper. Polish the surface 2 minutes by Pre-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia Polisher paste.

Source: GC Corp. R & D
KALORE’s Total Package

KALORE™

Prepolymerized Filler

KALORE’s low shrinkage stress means less stress around the fillers and minimizing filler dropouts. The result is better longevity and durability for your restoration.

No gap on prepolymerized filler-matrix interphase. No dropout fillers were observed.

Protocol: Prepare 15mm diameter and 1.5mm thick. Grind the surface by 600 grid paper. Polish the surface 2 minutes by Pre-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia-Shine. Measure the surface gloss rate. Polish the surface 2 minutes by Dia Polisher paste.

Source: GC Corp. R & D
Three body wear test, µm

Protocol:
- Composite specimens were prepared. Specimens were moved up and down along a 5 cm path at a rate of 30 strokes per minute and held in indirect contact with an acrylic plate under a load of 350 gf load and simultaneously, the sample holder slid horizontally along a 2 cm path at a rate of 30 strokes per minute. A mixture of PMMA and glycerol (1:1 vol%) was used as an intermediate abrasive. After 100,000 cycles (one complete lateral and vertical movement counts for one cycle), the material wear was measured. The material wear was evaluated by the height loss.
- After this test, samples of a selection of composites were processed for SEM image taking.

Source: GC Corp. R & D
Three body wear test

SEM images taken following 3-body wear tests show that KALORE™ retains excellent integrity between HDR prepolymerized filler and resin matrix. Other specimens show signs of particle loss and gaps between filler-matrix interphase.

Protocol: Three-Body Wear Test, details on previous slide.

Source: GC Corp. R & D
Additional Physical Properties

Flexural Strength
Fracture Toughness
Modulus of Elasticity
Radiopacity
Flexural strength, MPa

Source: GC Corp. R & D

KALORE™ demonstrates amongst the highest of Flexural Strengths.

Protocol:

ISO4049:2000
Fracture Toughness, MPa m¹/²

Means with the same lower case letter are not significantly different (1-way ANOVA/Tukey's; p = 0.05).

Source: Dr Jack Ferracane, “Evaluation of the Volumetric Shrinkage, Fracture Toughness and Polymerization Contraction Stress of a New Dental Composite”, March 2009

Protocol:
Single-edge notch fracture toughness in three-point bending according to ASTM-E399.
Fracture Toughness, MPa

KALORE™ demonstrates excellent “Fracture Toughness”.

Protocol:
Test method is based on ISO4049:2000, Flexural strength test. Calculate total energy till sample break.

Source: GC Corp. R & D
Ideally a material should not have a modulus of elasticity that is too high since brittle materials are not efficient in buffering masticatory pressures.

KALORE™ has a Modulus of Elasticity that is not too high (and therefore too brittle), or too low (and therefore too elastic).

Source: GC Corp. R & D
Radiopacity

KALORE™ vs. Gradia Direct

KALORE™ Gradia Direct X Gradia Direct P

Source: GC Corp. R & D
Radiopacity

KALORE™ vs. Competitors

Radiopacity (mmAl)

- GC KALORE
- CeramX mono
- Venus
- Tetric Evoceram
- Grandio
- 4 Seasons
- Estelite Σ Quick
- Premise
- EsthetX
- Prisma TPH3
- Filtek Silorane
- Filtek Z250
- Filtek Supreme DL

KALORE™ has Excellent radiopacity compared to the other composites tested.

Source: GC Corp. R & D
Shade System

Universal
Translucent
Opaque

26 Total Shades in 3 Different Opacities
Universal Shades

A1 A2 A3 A3.5 A4
B1 B2 B3
C2 C3
D2
CV = Cervical (B5)
CVD = Cervical Dark (B7)
BW = Bleaching White
XBW = Extra Bleaching White

Universal shades have a very delicate balance between value, translucency, hue and chroma and were developed for a single-shade layering technique. They are grouped into A (reddish-brown), B (reddish-yellow), C (Grey), D (reddish-grey), Bleach and Cervical shades.
Translucent Shades

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>(White Translucent)</td>
</tr>
<tr>
<td>DT</td>
<td>(Dark Translucent)</td>
</tr>
<tr>
<td>CT</td>
<td>(Clear Translucent)</td>
</tr>
<tr>
<td>NT</td>
<td>(Natural Translucent)</td>
</tr>
<tr>
<td>GT</td>
<td>(Gray Translucent)</td>
</tr>
<tr>
<td>CVT</td>
<td>(Cervical Translucent)</td>
</tr>
</tbody>
</table>

The translucent shades provide the ability to give more “life” to the final restoration, and to mimic the value and age-dependent enamel changes. Due to the uniqueness of these shades a correlation to Vita Shades is not possible and the GC KALORE shade guide should be used.
Opaque Shades (Dentin)

KO2
AO3
AO4
OBW (Opacious Bleach White)
OXBW (Opacious Extra Bleach White)

KALORE’s Opaque shades are available as AO2, AO3, AO4, OBW and OXBW. Their increased opacity prevents light from the oral cavity being transmitted through the restoration, which would result in a darker appearance.
Polychromatic Stratification

Suggested Shade Combinations for multiple layers in deep and/or large cavities.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A3.5</th>
<th>A4</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>C2</th>
<th>C3</th>
<th>D2</th>
<th>CV</th>
<th>CVD</th>
<th>BW</th>
<th>XBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opaque</td>
<td>OBW</td>
<td>AO2</td>
<td>AO3</td>
<td>AO3</td>
<td>AO4</td>
<td>OBW</td>
<td>AO2</td>
<td>AO2</td>
<td>AO3</td>
<td>AO3</td>
<td>AO4</td>
<td>AO2</td>
<td>AO4</td>
<td>AO4</td>
<td>OBW</td>
</tr>
<tr>
<td>Universal</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A3.5</td>
<td>A4</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>C2</td>
<td>C3</td>
<td>D2</td>
<td>CV</td>
<td>CVD</td>
<td>BW</td>
<td>XBW</td>
</tr>
<tr>
<td>Translucent</td>
<td>WT</td>
<td>WT</td>
<td>DT</td>
<td>DT</td>
<td>DT</td>
<td>WT</td>
<td>WT</td>
<td>DT</td>
<td>DT</td>
<td>DT</td>
<td>WT</td>
<td>DT</td>
<td>DT</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>Incisal</td>
<td>CT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>GT</td>
<td>CT</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>GT</td>
<td>CT</td>
<td>CVT</td>
<td>CVT</td>
<td>CT</td>
<td>CT</td>
</tr>
</tbody>
</table>
Multi shade Build-up Guide

Included with Trial Kits

(Trial Kits contain 3 shades - A1, A2 and BW)
Curing Times and Effective Depth of Cure

<table>
<thead>
<tr>
<th>Curing Light Source</th>
<th>Curing Time, Seconds</th>
<th>Curing Time, Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma Arc Light (~2000mW/cm²)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>GC G-Light (~1200mW/cm²)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Halogen / LED (~700mW/cm²)</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GC Kalore Shade</th>
<th>Depth of Cure</th>
<th>Depth of Cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT, NT, WT, GT, CVT</td>
<td>3.0 mm</td>
<td>3.5 mm</td>
</tr>
<tr>
<td>A1, A2, B1, B2, D2, C2, XBW, BW, DT</td>
<td>2.5 mm</td>
<td>3.0 mm</td>
</tr>
<tr>
<td>A3, B3, A3.5</td>
<td>2.0 mm</td>
<td>3.0 mm</td>
</tr>
<tr>
<td>A4, C3, AO2, AO3, AO4, CV, CVD, and OBW, OXBW</td>
<td>1.5 mm</td>
<td>2.5 mm</td>
</tr>
</tbody>
</table>
The KALORE™ Shade Guide utilizes stepped shade tabs so the clinician can evaluate variations in shade due to thickness. The tabs can also be superimposed to evaluate layering effects. The KALORE™ shade system is based on Vita® Classic.
Clinical Applications
Clinical Indications

- Direct composite restorations of Class I, II, III, IV and V Cavities
- Restoration of “wedge shaped defects” and root surface caries
- Facings and veneers
- Diastema closures

Aureana Tseu
Miss Hawaii 2009
Class I and II Direct Restorations

Translucent Shade

Universal Shade

Before

After

Dentistry by Dr. Wynn Okuda, HI
Class I Direct Restoration

“Single Shade KALORE™ A2 Universal Only”
Class II Direct Restorations

“Single Shade Kalore A2 Universal Only”

Before

After

Dentistry by Dr. Mark Pitel, NY
Class III Direct Restoration

Before

After

Translucent Shade

Universal Shade

Opaque Shade

Dentistry by Dr. Wynn Okuda, HI
Class IV Direct Restorations

Before

After

Translucent Shade
Universal Shade
Opaque Shade

Dentistry by Dr. Frank J. Milnar, MN
Class IV Restorations

Before
Class IV Restorations

After

Dentistry by Dr. Frank J. Milnar, MN
Class V Restoration

Before

After

Dentistry by Dr. Wynn Okuda, HI
Diastema Closure Restorations

Before

After

Photography and Dentistry by douglas, TX
Direct Veneer Restorations

Before

After

Dentistry by Dr. Wynn Okuda, HI
Fractured Enamel

Dentistry by Dr. Stewart
Miss Hawaii 2009 with KALORE™
Available Dispensing Options

Single Dose Unitips
0.3g / 0.16mL per tip

Multiuse Syringes
4g / 2.0mL per syringe
Available Product Packaging
KALORE™ Trial Kits

Unitip Trial Kit*
50 Unitips in 3 Shades

Syringe Trial Kit*
1 each 4 g syringe in 3 Shades

*Trial Kit contains 3 shades (A1, A2 and BW)
KALORE™ Refills

Unitip Refills
All 26 Shades
Marketing Collaterals – 6 page brochure
Witness the Discovery of a Revolutionary Composite

Your Search is Over – KALORE™ is Here.

Dentistry has relied on the same basic monomer technology in its materials for decades with advances in resin technology being primarily on the filler side (filler size, filler shape, filler type, etc.). The newest innovation from GC America utilizes an exclusive new monomer technology from DuPont to create a truly revolutionary TOTAL PACKAGE in aesthetic restorations.

NEW Monomer Technology from DuPont

Flexible Arm
Long Rigid Core
Flexible Arm

KALORE challenges the status quo by taking aesthetic restorations to the next level – making them more sculptable, easier to polish with exceptional gloss and highly resistant to wear.

Three components factor into KALORE’s unique design. First, DuPont’s new monomer technology (licensed exclusively to KALORE). Second, GC America’s newly-developed, patented HDR (High Density Radiopaque) prepolymers. Finally, the proprietary interface between the filler and the matrix is a critical factor in the success and longevity of this composite. With innovation from every angle, KALORE truly offers the total package of:

- Superior handling
- Unsurpassed aesthetics
- Significant longevity & durability

An Innovation in Restorations

Using Exclusive, New Monomer Technology from DuPont

KALORE™ represents the perfect discovery of science and beauty – the total package in aesthetic restorations that has eluded you for so long. Until now.

Benefit #1: Superior Handling – Complete Control is in Your Hands

- KALORE is non-sticky due to the new, patented HDR filler technology
- The DuPont monomer’s stiff core and flexible arm create putty-like properties and make it easier to spread
- Results KALORE’s unique properties allow for easy shaping and adaptation to the restorations surface. KALORE is highly sculptable with no shimming.

Benefit #2: Unsurpassed Aesthetics – Flawless Beauty, So Easy to Create

- Exceptional gloss:
 - Easy polishability:
 - Sustained luster:
- Chamolain effect: The optimized refractive index of the filler and monomer matrix result in near-perfect color matching
- Results: Unmatched aesthetic success and perfect restorations for you and your patients.

At the end of the day, it all comes down to how well a composite looks when the patient smiles. KALORE delivers the superior results the dental community has come to expect from GC America.

Polishability

Innovation in Technique International
The Science Behind the Smile – PROVEN!

The results and the perfect results achieved by using KALORE™ are explained in Aurora Tseu – Miss Hawaii, 2009 (see photos at right). In an area where perfection is a requirement, the qualities of KALORE made it the material of choice to highlight and complement her exceptional beauty as she pursued her quest for Miss USA 2009.

"Amazing! KALORE is not only so easy to use, it polishes and feels like porcelain. With its remarkable chameleon effect and low marginal shrinkage, this composite resin has tremendously moved the bar up to a new plateau in aesthetic restorative materials.”
– Dr. Wynn Okada, DMD, past President, AADC, Honolulu, HI

Benefit #3: Significant Longevity and Durability – Sustained Form and Function

During polymerization of composite resin, the resin matrix reduces in volume while the particles retain their prepolymerization volume. This results in stress at the filler and resin matrix interface. This stress remains within the cured composite resin and can lead to early replacement of restorations, as particles will be lost from the matrix. To reduce polymerization stress at the filler/resin matrix interface, lower levels of polymerization shrinkage are required.

The average restoration loses form, function and aesthetics between three to four years as the particles drop out due to shrinkage stress. This causes:

– Surface to lose luster
– Surface to become rough
– Stains to become evident
– Greater wear and tear overall

KALORE’s unique design results in the lowest shrinkage stress vs. the competition which means less stress around the fillers and better durability and longevity for the restoration.

KALORE keeps your restorations beautiful, longer by maintaining their form and function over time.

KALORE™: A Recipe for Your Success

Shrinkage Stress

KALORE clearly exhibits the lowest shrinkage stress amongst those tested.

KALORE offers three opacities for precise shade matching and blending. Whether you choose to use a single shade or multiple shades for polyphosphatic stratification, your restorations will look as beautiful as a ceramic restoration, as smooth and perfect as porcelain.

In 90% of cases, the use of a Universal shade will be sufficient. In the remaining 10% – those "special" cases – a combination of Universal, Opaque and/or Translucent shades would be selected. KALORE’s simplified shade system gives you a “recipe” to follow for perfection and total control in your restoration aesthetics.

KALORE’s Simplified Shade System

“As an artist, I look for materials that can complement my creativity. Essentials such as handling, the ability to match tooth structure and capture the correct reflective index of light are attributes of great composite. KALORE definitely meets these standards of excellence.”
– Dr. Frank J. Milhe, DDS, AADC, St. Paul, MN
Marketing Collaterals — 36 page Technical Manual
Literature References

6. Reality Now, June 2009 Number 207.

11. Kalore evaluation, Dental Advisor, December 2009
For further information contact:
GC America Inc.
(800) 323-7063

or visit

www.kalore.net

Dr. Robert Lee
Director of Marketing
email: Robert_Lee@gcamerica.com