GC Fuji ORTHO (LC)

Glass ionomer cement for orthodontic bonding

Literature (as of 6 June, 2005)

3. Shear Bond Strengths of Light-Cured Glass Ionomers, U. Süßenberger, V. Cacciafesta, a.o., Department of Orthodontics and Dentofacial Orthopaedics, Humboldt University of Berlin. EOS 1996
4. Effect of water, saliva and blood contamination on shear bond strength of orthodontic glass ionomer cement to etched enamel, Y. Oniki, T. Itoh, a.o., Department of Orthodontics and Dental Materials, Fukuoka Dental College, Fukuoka, Japan. EOS 1996

15. Effects of surface treatment on bracket's bond strength using glass-polyalkanoate, A. Béress, A.H.L. Tjan, a.o., Loma Linda University, Loma Linda, IADR 1997, Abstract 1417

27. A new self-curing resin-modified glass-ionomer cement for the direct bonding of orthodontic brackets in vivo, John P. Fricker, American Journal of Orthodontics and Dentofacial Orthopedics, Volume 113, No. 4

32. The relationship between bond strength and bonding agent when resin-reinforced glass ionomer cements are used to bond orthodontic attachments to bovine enamel, KS Coups
34. Enamel demineralization adjacent to orthodontic brackets bonded with hybrid glass ionomer cements: An in vitro study, A. B. Vorhies, K. J. Donley, R. N. Staley and J.S. Wefel, the American Journal of Orthodontics and Dentofacial Orthopedics, Volume 114, Number 4
42. Effect of variation in cure time on the bond of resin modified glass ionomer orthodontic cement bonded to enamel, L.A. Fulsaas, R.D. Davis, J.D. Overton, B. Christenson, Keesler Medical Center, Keesler AFB MS, USA, IADR 1999, Abstract 1643
43. Tensile Bond Strength of Orthodontic Brackets in Different Methods of Fluoride Application, H.B. Kim, S.H. Koh, L.E. Wyborny and J.T. Chan, University of Texas, Houston Health Science Center-Dental Branch and V.A. Medical Center, Houston, Texas, USA, IADR 1999, Abstract 2114
49. Laboratory evaluation of bonded molar tubes, S. Letters, E. Roger, D.T. Millett, A. Cummings and J. Love, Orthodontic Unit, Glasgow Dental School, Dental Materials Science, Glasgow Dental Hospital and Robertson Centre for Biostatistics, University of Glasgow, UK, J Dent Res 78 (5) 1999, Divisional Abstracts: British Society for Dental Research, Abstract 348
50. Shear Bond Strength of New Dental Adhesive that Bonds Orthodontic Brackets to Unetched Enamel, D. Harary, I. Gillis, and M. Redlich, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem, Israel, J Dent Res 78 (5) 1999, Divisional Abstracts : Israeli Division, Abstract 52

52. Maximizing the Benefits of Resin-Modified Glass Ionomer Orthodontic Adhesives, Bruce Gallant, J Gen Orthod 1999;10(2):22-6

55. In vitro Study of Resin-Modified Glass Ionomer Cements for Cementation of Orthodontic Bands – Isolation, Surplus Removal and Humidity as Factors Influencing the Bond Strength between Enamel, Cement and Metal, Saskia M. Liebmann and Paul-Georg Jost-Brinkmann, J Orofac Orthop/Fortschr Kieferorthop 1999;60:348-60 (Nr.5)

60. Shear Bond Strengths Attained In Vitro with Light-Cured Glass Ionomers vs Composite Adhesives in Bonding Ceramic Brackets to Metal or Porcelain, P.-G. Jost-Brinkmann and A. Böhme, J Adhesive Dent 1999; 1 : 243-253

61. Metallic bracket to enamel bonding with a photopolymerizable resin – reinforced glass ionomer, Ana Rosa Flores, Gabriel Sáez E and Frederico Barceló, the American Journal of Orthodontics and Dentofacial Orthopedics, Volume 116, Number 5

62. Effect of time on the shear bond strength of glass ionomer and composite orthodontic adhesives, Samir E. Bishara, Leigh VonWaltd, Marc E. Olson and John F. Laffoon, the American Journal of Orthodontics and Dentofacial Orthopedics, Volume 116, Number 6

63. The MIT test on the orthodontic bonding adhesives, C.Y. Tsai, T.H. Huang, C.E. Huang, H. Lee and C.T.Kao, Institute of Stomatology, Chung Shan Medical and Dental College, Taichung, Taiwan, R.O.C., 78th General Session of the IADR 2000, Abstract 380

64. Light Cure Time and Bond Strength for Fuji Ortho LC, M.A.T. Croco, R.N. Staley, C.C. Conrad, T.R. Staley and J.R. Jakobsen, The University of Iowa, Iowa City, IA 52242 USA, 72th General Session of the IADR 2000, Abstract 417

67. Effect of Bracket Type of the Shear Bond Strength of Fuji Ortho LC, C.A. Munoz, W.L. Schlenker, N. Jessop, R. Feller, C.W. Mertz and R.S. Demke, Loma Linda University, Loma Linda, CA and GC America, Alsip, II, 78th General Session of the IADR 2000, Abstract 1725

70. Polymerization Shrinkage of Orthodontic Cements Utilizing Various Light Curing Systems, R. Kerby, H. Shamsai, D. Featheringham, L. Knobloch and R. Seghi, Ohio State University, College of Dentistry, Columbus, OH, 78th General Session of the IADR 2000, Abstract 2898

74. Bond Strength of Orthodontic Cements Utilizing Various Light Curing Systems, D. Featheringham, L. Knobloch, W.A. Brantley and A. Lidral, Ohio State University, College of Dentistry, Columbus, OH, 78th General Session of the IADR 2000, Abstract 3771

79. A comparison of Shear Bond Strengths of Three Visible Light-Cured Orthodontic Adhesives, S.E. Owens Jr, DDS, MSD; B.H. Miller, DDS, MS; Angle Orthodontist, Vol 70, No 5, 2000

80. Bonding of Light-Cured Glass Ionomer Cement to Polycarbonate Resin Treated With Experimental Primers, N. Fujita, DDS; T. Itoh, DDS, PhD; M. Matsumoto, DDS, PhD; A.A. Caputo, PhD; Angle Orthodontist, Vol 70, No 5, 2000

81. Effect of altering the type of enamel conditioner on the shear bond strength of a resin-reinforced glass ionomer adhesive, Samir E. Bishara BDS, Dortho, DDS, MS; Leigh VonWald, BA; John F. Laffoon, BS and Jane R. Jakobsen, BS, MA; American Journal of Orthodontics and Dentofacial Orthopedics, Volume 118, Number 3

82. Direct bonding of cast splint Herbst appliances: a clinical comparison between a resin-reinforced glass ionomer adhesive and a composite resin, Vittorio Cacciafesta, Hans Ulrik Paulsen, Department of Orthodontics, Royal Dental College, Aarhus University, Aarhus, Denmark; Cacciafesta et al. Bonding the Herbst appliance

83. Difference in bonding/debonding chair time between a resin-modified, self-cured glass ionomer cement and a composite resin: a randomized clinical trial; Vittorio Cacciafesta, Department of Orthodontics, Royal Dental College, Aarhus University, Aarhus, Denmark; Cacciafesta et al. Bonding the Herbst appliance

84. Effect of changing enamel conditioner concentration on the shear bond strength of a resin-modified glass ionomer adhesive; Samir E. Bishara BDS, Dortho, DDS, MS; Leigh VonWald, BA; John F. Laffoon, BS and Jane R. Jakobsen, BS, MA; American Journal of Orthodontics and Dentofacial Orthopedics, September 2000, Volume 118, Number 3

85. Tensile bond strength of a light-cured glass ionomer cement when used for bracket bonding under different conditions: an in vitro study; I. Kirovski and S. Madzarova, Center of Military Health Institutions, Skopje; European Journal of Orthodontics 22 (2000) 719-723

87. Effects of conventional and high-intensity light-curing on enamel shear bond strength of composite resin and resin-modified glass-ionomer; M.F. Sfondrini, MD,DDS; V.Cacciafesta, DDS, MSc; A.Pistorio, MD, PhD; G.Sfondrini, MD,DDS; American Journal of Orthodontics and Dentofacial Orthopedics/Vol.119, Number 1

88. Comparison of bond strength of three adhesives: Composite resin, hybrid GIC, and glass-filled GIC; D. Rix, BSc,DDS,MC1D; T.F. Foley, DDS,MC1D; A. Mamandras, DDS,MC1D; American Journal of Orthodontics and Dentofacial Orthopedics / Vol. 119, Number 1

89. Orthodontic bonding with glass ionomer cements: from theory to practice; G. Altounian; Rev Orthop Dento Faciale 34: 557-600, 2000

90. In vitro bond strength comparison between Concise™, NO-MIX and Fuji ORTHO LC; O.Sorel, R.Alam, G.Cathelineau (Laboratoire de Biomateriaux en Site Osseux, Université de Rennes 1, France); 4th Joint Meeting Warsaw EADR 2000; Abstract 164

94. Bond strength study of metallic brackets bonded in wet environment; P.C.F.Santos, W.G.Miranda JR, B.G.P.Campos, H.M.G.Santos; Dentistry Faculty, Sao Paulo University; JDR, Volume 79-N°5, May 2000, IADR 2000 Abstracts, Brazilian division, Abstract B-255

95. Comparison of enamel colour changes associated with orthodontic bonding; T.Eliades, A.Kakaboura, G.Eliades, T.G.Bradley (Dept. of Dental Materials University of Athens, Greece and Dept. of Orthodontics Marquette University, WI, USA); 30th Annual Meeting of the AADR 2001 – Chicago; Abstract 219

96. Enamel Decalcification around orthodontic brackets bonded with different adhesives; C.T.Ramos, K.Kohli, P.Ngan, M.Gladwin (VVU-School of Dentistry, Morgantown, WV); 30th Annual Meeting of the AADR 2001 – Chicago; Abstract 229

97. In vitro evaluation of fluoride release from two orthodontic bonding adhesives; Haddad, M.Messersmith, J.T.Chan (University of Texas – Houston Dental Branch, Houston, Texas, USA); 30th Annual Meeting of the AADR 2001 – Chicago; Abstract 322

98. Bond strength of VLC materials glass ionomer cement and enamel preparation; M.Valente, C.A.Evans, W.G.De Rijck, J.Drummond (College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612 USA); 30th Annual Meeting of the AADR 2001 – Chicago; Abstract 1183

99. In vitro enamel decalcification and fluoride release among orthodontic adhesives; P.Ngan, C.T.Ramos, E.C.Kao, K.Kohli, M.Gladwin (West Virginia University, School of Dentistry, Morgantown, WV); 30th Annual Meeting of the AADR 2001 – Chicago; Abstract 1875

100. Bracket adhesion strength as a function of enamel condition and adhesive: an in vitro study; W.G.Chang, Y.K.Lee, B.S.Lim, C.W.Kim, T.V.Vijayaraghavan, Seoul National University, College of Dentistry, Seoul, Korea, New York University, College of Dentistry, New York, NY, USA); 79th General Session & Exhibition of the IADR 2001 – Chiba; Abstract 0906

101. Clinical comparison of orthodontic bracket retention: plasma arc vs halogen light activation of adhesive; J.Kaku, M.Kaku, R.Ewoldsen, K.Hirota (Private practice Tokyo, Japan, GC Corp. Tokyo Japan); 79th General Session & Exhibition of the IADR 2001 – Chiba; Abstract 0908
102. Failure of brackets and fluoride release from different bonding system; A.Permpiboon, P.Nisalak, R.Surarit, P.Jaochakarasiri, C.Kaewsuriyathumrong (Mahidol University, Bangkok, Thailand); 79th General Session & Exhibition of the IADR 2001 – Chiba; Abstract 1464

103. Laboratory evaluation of orthodontic band cements; D.T.Millett, S.Duff, L.Morrison, A.Cummings and W.H.Gilmour (University of Glasgow, UK); 79th General Session & Exhibition of the IADR 2001 – Chiba; Abstract 1495

104. Comparative assessment of light-cured resin-modified glass ionomer and composite resin adhesives: In vitro study of a new adhesive system; George V. Newman, DDS, Richard A. Newman, DMD, and Arijit K. Sengupta, PhD; American Journal of Orthodontics and Dentofacial Orthopedics, Volume 119, Number 3A

106. Orthodontic bracket bonding with a plasma-arc light and resin-reinforced glass ionomer cement; H. Ishikawa, DDS, MSD, PhD, A.Komori, DDS, F.Ando, DDS, PhD; American Journal of Orthodontics and Dentofacial Orthopedics Volume 120, Number 1

107. Book reviews and article abstracts; Alex Jacobson, DMD, MS, PhD (Birmingham, Ala) American Journal of Orthodontics and Dentofacial Orthopedics/September 2001

109. An in vivo investigation into the use of resin-modified glass poly(alkenoate) cements as orthodontic bonding agents; S.C. Choo (Bristol Dental Hospital), A.J.Ireland (Royal United Hospital Bath), M. Sherriff (GKT Dental Institute London); 2001 European Orthodontic Society

110. An 18-month clinical study of bond failures with resin-modified glass ionomer cement in orthodontic practice; L.Hitmi, DDS, Ch.Muller, DDS DipOrtho, M.Mujajic, DDS, DipOrtho and J.-P.Attal, DDS, PhD; American Journal of Orthodontics and Dentofacial Orthopedics Volume 120, Number 4

111. Bond strength evaluation of orthodontic brackets using different cements; from M.Garcia, A. Romeo, E. Osorio, R. Osorio, B. De La Higuera and M. Toledano, University of Granada, Spain – University of Barcelona, Spain; IADR 2002 San Diego, Abstract 0367

112. Resin-reinforced Glass Ionomer cements as orthodontic adhesives: a randomized in-vivo evaluation; from H.A.Brosnan, A.L.Maganzini and M.J.Peluso, University of Medicine and Dentistry of New Jersey, USA; IADR 2002 San Diego, Abstract 0452

114. Shear bond strength of different brackets using resin modified glass ionomer; from M.G.G.Carias, S.Macari, M.B.S.Stuani, R.G.P. Dibb, M.C.Borsatto, University of Sao Paulo; IADR 2002 San Diego, Abstract 1679

115. Effects of bonding adhesives and conditioners on the shear bond strength of brackets and decalcified enamel; from W.G. Chang, B.Lim, Y. Lee and C. Kim, Seoul National University, College of Dentistry, South Korea; IADR 2002 San Diego, Abstract 1862

117. Demineralization around orthodontic brackets using two different bonding adhesives; from M.Croco, R.Staley and B.Zimmerman, University of Iowa, USA; IADR 2002 San Diego, Abstract 2826

118. Fluoride agent’s uptake effect over a resin modified glass ionomer; from M.O.Lagravère, J.Mas and D.L.Chang, Universidad Peruana Cayetano Heredia, Peru; IADR 2002 San Diego, Abstract 3970

119. Fluoride release from new light-cured orthodontic bonding agents; C.J. McNeill, DDS, MSc, W.A. Wiltshire, BChD, BChD, MDent, MChD, DSc, C. Dawes, BDS and CH.L.B. Lavelle, DDS, PhD, DSc; American Journal of Orthodontics and Dentofacial Orthopedics – Volume 120, Number 4, p.392-397
120. A comparison of fluoride release by resin-modified GIC and polyacid-modified composite resin; D. Rix, BSc, DDS, MCID; T.F. Foley, DDS, MCID; D. Banting, DDS, DDPH, MSc, PhD and A. Mamandras, DDS, MSc; American Journal of Orthodontics and Dentofacial Orthopedics – Volume 120, Number 4, p.398-405

121. Effects of a LED curing unit on the shear bond strength of two orthodontic adhesives; Cacciafesta V., Sfondrini M.F., Jost-Brinkmann P-G, Boehme A., University of Pavia, Italy, Humboldt University of Berlin, Germany; 102nd Annual Session of the American Association of Orthodontists, Philadelphia, Pennsylvania, May 3-7 2002

122. Decalcification and bond failure: A comparison of a glass ionomer and a composite bonding system; Salvatore S.M., Albert Einstein Medical Center, Philadelphia, PA, USA; 102nd Annual Session of the American Association of Orthodontists, Philadelphia, Pennsylvania, May 3-7 2002

125. Lampade alogene, a plasma e led per la fotopolimerizzazione di adesivi ortodontici: un confronto delle forze di distacco in vitro (Halogen, xenon arc and led light curing units for curing orthodontic adhesives: an in vitro shear bond strength comparison); V. Cacciafesta, M.F. Sfondrini (Università degli studi di Pavia), P-G Jost-Brinkmann, A. Boehme (Humboldt University of Berlin); Ortognatodontia Italiana vol.11, 3-2002

126. Effetti della fluoroprofilassi sulle forze di distacco al taglio di un vetroionomero rinforzato con resina; V. Cacciafesta, M.F. Sfondrini, D. Calvi, G. Sfondrini (Università degli studi di Pavia); Mondo Ortodontico 3/2002

127. In vivo bracket retention comparison of a resin-modified glass ionomer cement and a resin-based bracket adhesive system after a year; D.J. Hegarty, BDSNUI, MDS, M. Orth RCS (Edin), FDS (Orth) RCS, and T.V. Macfarlane, BSc, PhD; American Journal of Orthodontics and Dentofacial Orthopedics, Volume 121, Number 5, p.496-501

128. Etching conditions for resin-modified glass ionomer cement for orthodontic brackets; R.M. Valente DDS, W.G. de Rijk, PhD, DDS, J.L. Drummond, DDS, PhD, MBA and C.A. Evans, DDS, MDMSc (Chicago); American Journal of Orthodontics and Dentofacial orthopedics, Volume 122, Number 5 - August 2002

129. Effect of fluoride varnish on demineralization adjacent to brackets bonded with RMGI cement; J.L. Schmit, DDS, MS, R.N. Staley, DDS, MA, MS, J.S. Wefel, PhD, M. Kanellis, DDS, MS, J.R. Jakobsen, BA, MS and P.J. Keenan, BSc, MS - Cedar Rapids and Iowa City, Iowa, and Galway, Ireland; American Journal of Orthodontics and Dentofacial Orthopedics, Volume 122, Number 2 - August 2002

130. Effect of using self-etching primer for bonding orthodontic brackets; R. Yamada, DDS, T. Hayakawa, PhD, K. Kasai, DDS, PhD – Nihon University School of Dentistry at Matsudo, Chiba; Japan; Angle Orthodontist, Vol.72, N° 6, 2002

131. In vivo inhibition of demineralization around orthodontic brackets; J. Gorton, DMD, MS, and J. D.B. Featherstone, MSc, PhD – University of California; American Journal of Orthodontics and Dentofacial Orthopedics, Volume 123, Number 1

132. In vitro comparison of orthodontic band cements; D.T. Millet, BDSc, DDS, FDS, MOrth, A. Cummings – North Glasgow University Hospitals NHS Trust, S. Duff, BDS – West Kilbride-Scotland, L. Morrison, BDS – Linlithgow-Scotland, W. Harper Gilmour, BSc, MSc, CStat – University of Glasgow; American Journal of Orthodontics and Dentofacial Orthopedics-January 2003

133. Orthodontic bonding: evaluation of bond failure strength in clinical conditions; P. Laverne, Ch. Lodter, R. Piquet, C. Arnaud, F. Collombet (Faculté de Chirurgie Dentaire 3, Chemin des Marachers 31000 Toulouse); Abstract 151 – EADR Cardiff, September 2002

134. Bond strength of orthodontic brackets using different cements, after blood and saliva contamination; J. Falcao (Instituto Superior Ciencias da Saude, Portugal), E. Osorio, M. Toledano, R. Osorio (Univ. of Granada, Spain); Abstract 359 - EADR Cardiff, September 2002

139. The effect of fluoride-releasing orthodontic adhesives on the prevention of enamel decalcification; S. Thiradilok, S. Luppanapornlarp and N. Pengrux; Abstract 1000 – 81st General Session of the IADR, 2003, Göteborg, Sweden

140. Fluoride release from orthodontic adhesives underneath brackets in vitro; S. Luppanapornlarp, S. Thiradilok and N. Pengrux; Abstract 1590 – 81st General Session of the IADR, 2003, Göteborg, Sweden

141. Shear peel bond strengths of hydrophilic orthodontic bonding systems at 24 hours; W.A. Wiltshire; Abstract 1816 – 81st General Session of the IADR, 2003, Göteborg, Sweden

142. Bond strength of orthodontic brackets using different light and self-curing cements; Manuel Toledano, Raquel Osorio, Estrella Osorio, Alejandro Romeo, Blance de la Higuera, Franklin Garcia-Godoy; Angle Orthodontist, Vol 73, No 1, 2003

144. Glass ionomer cements as luting agents for orthodontic brackets; K.S. Coups-Smith, P.E. Rossouw, K.C. Titley; Angle Orthodontist, Vol 73, No 4, 2003

145. Polymerization of orthodontic adhesives using modern high-intensity visible curing lights; M.R. Kauppi and E.C. Combe; American Journal of Orthodontics and Dentofacial Orthopedics – Volume 124, Number 3

149. Simultaneous release of fluoride and aluminum from dental materials in various immersion media; MF Hayacibara, GMB Ambrosano JA Cury; Operative Dentistry, 2004, 29-1, 16-22

150. In vivo effect of a resin-modified glass ionomer cement on enamel demineralization around orthodontic brackets; R Correa Pascotto, M Fidelia de Lima Navarro, L Capelozza Filho and J Aparecido Cury; American Journal of Orthodontics and Dentofacial Orthopedics, Volume 125, Number 1

